不妨看做计数 $\{0, 1, \dots, 2N-1\}$ 的排列 $p_0, p_1, \dots, p_{2N-1}$,那么容斥信息就是
$$ \prod_{i=0}^{N-1}(1-[\lfloor p_{2i}/2\rfloor=i]-[\lfloor p_{2i+1}/2\rfloor=i]-[\lfloor p_{2i}/2\rfloor=\lfloor p_{2i+1}/2\rfloor]+2[\lfloor p_{2i}/2\rfloor=\lfloor p_{2i+1}/2\rfloor=i]) $$
钦定这三种元素出现,可得容斥式
$$ 2^{-2N} \sum_{i+j+k\le N} 2^i (-1)^j (-1)^k \binom N{i,j,k,N-i-j-k} 2^i 2^{2j} \binom{N-i-j}k k! 2^k (2N-2i-j-2k)! $$
时间复杂度 $O(N^3)$。