ログイン
登録
QOJ.ac
QOJ
QOJ
コンテスト
カテゴリー
問題
提出一覧
ハック!
ブログ
ランキング
AC数
#194:
ningago
Accepted: : 290
#194:
ucup-team7345
Accepted: : 290
#196:
ideograph_advantage
Accepted: : 289
#196:
ucup-team5217
Accepted: : 289
#196:
wsc2008
Accepted: : 289
#199:
ucup-team7545
Accepted: : 288
#199:
ucup-team896
Accepted: : 288
#201:
0000pnc
Accepted: : 287
#201:
lgvc
Accepted: : 287
#201:
ucup-team7398
Accepted: : 287
#204:
rqoi031
Accepted: : 283
#205:
jiangxinyang
Accepted: : 282
#206:
ucup-team6590
Accepted: : 281
#206:
ucup-team7502
Accepted: : 281
#208:
CHD
Accepted: : 280
即使雨永不停歇地下,也要在未曾被雨浸透的角落保有属于自己的一小片虹。
#208:
ucup-team5015
Accepted: : 280
#210:
A_programmer
Accepted: : 279
#210:
ucup-team1817
Accepted: : 279
#212:
ucup-team4217
Accepted: : 278
#213:
Dinal
Accepted: : 277
#214:
ucup-team045
Accepted: : 276
#215:
addiyoue
Accepted: : 273
You Know Who
#215:
dxbt
Accepted: : 273
#215:
ucup-team1525
Accepted: : 273
#218:
Forever_Young
Accepted: : 271
#219:
AFewSuns
Accepted: : 269
$\displaystyle\sum_{n \geq 0}{(x+y)^n\frac{u^n}{n!}}=\sum_{k \geq 0}\frac{x}{x-kz}(x-kz)^k\frac{u^k}{k!}\sum_{l \geq 0}\frac{(y+kz)^l}{l!}u^l$
#219:
ucup-team3099
Accepted: : 269
#221:
complexor
Accepted: : 268
#222:
LuSter_M
Accepted: : 266
#222:
specialuser
Accepted: : 266
#224:
ucup-team122
Accepted: : 265
#225:
ucup-team3670
Accepted: : 263
#226:
ucup-team110
Accepted: : 262
#227:
LosMem
Accepted: : 260
#228:
He_Ren
Accepted: : 259
#228:
hydd
Accepted: : 259
But are we all lost stars trying to light up the dark?
#228:
NKheyuxiang
Accepted: : 259
#228:
ucup-team1447
Accepted: : 259
没队要
#228:
wangjunrui
Accepted: : 259
丢掉幻想,准备斗争!!!
#233:
ucup-team4527
Accepted: : 257
#233:
ucup-team5071
Accepted: : 257
#235:
ucup-team3515
Accepted: : 251
#236:
__jk__
Accepted: : 250
#237:
ucup-team3097
Accepted: : 249
#238:
hshhh
Accepted: : 248
#238:
IllusionaryDominance
Accepted: : 248
#238:
tricyzhkx
Accepted: : 248
#238:
ucup-team180
Accepted: : 248
#242:
cooluo
Accepted: : 247
π⁴+π⁵≈e⁶ | Per Aspera Ad Astra
#242:
hui
Accepted: : 247
#242:
ucup-team2307
Accepted: : 247
#245:
ucup-team2172
Accepted: : 246
法克皮百吨
#246:
617lyq
Accepted: : 245
#246:
ucup-team1293
Accepted: : 245
#246:
wcyQwQ
Accepted: : 245
#249:
Misuki
Accepted: : 244
$\mathbb{C}[x]/(x^{2^n} - 1) \cong \mathbb{C}[x]/(x - \omega) \times \mathbb{C}[x]/(x - \omega^2) \times \ldots\times \mathbb{C}[x]/(x - \omega^{2^n})$
#249:
ucup-team7623
Accepted: : 244
#251:
jrjyy
Accepted: : 243
#251:
Register
Accepted: : 243
#251:
ucup-team2045
Accepted: : 243
#254:
lunchbox
Accepted: : 242
#255:
jimmyywang
Accepted: : 241
#255:
std
Accepted: : 241
哼
#255:
Whales
Accepted: : 241
#258:
carrotqq
Accepted: : 240
#259:
CSQ
Accepted: : 239
#259:
rizynvu
Accepted: : 239
#259:
ucup-team267
Accepted: : 239
哈姆。
#262:
thomaswmy
Accepted: : 237
#262:
ucup-team3734
Accepted: : 237
#264:
iee
Accepted: : 236
#264:
ucup-team135
Accepted: : 236
#266:
ETK
Accepted: : 235
「我是星 我愿投身前途未卜的群星,为梦长明。」
#266:
huaxiamengjin
Accepted: : 235
#266:
ucup-team3627
Accepted: : 235
#269:
ucup-team7256
Accepted: : 234
#269:
UESTC_BYR
Accepted: : 234
#271:
Seniorious
Accepted: : 232
We do not know and will not know
#271:
wsxcb
Accepted: : 232
#273:
ucup-team3586
Accepted: : 231
#273:
ucup-team5984
Accepted: : 231
#275:
Euphoria_
Accepted: : 230
Orz ian_HLX
#275:
ucup-team5008
Accepted: : 230
#277:
tzl_Dedicatus545
Accepted: : 229
忙碌着 无为着 继续
#278:
DitaMirika
Accepted: : 228
Face the fear,make the future.
#278:
makrav
Accepted: : 228
#278:
qzez
Accepted: : 228
对于无向图的情况,基尔霍夫矩阵为 $K=D-A$,其中 $D$ 为度数矩阵,$A$ 为邻接矩阵。树的个数为去掉 $K$ 一行一列的行列式的值。对于外向树,$D$ 为每个点的入边度数和,内向树相反。此时需要去掉根所在行列。BEST 定理:有向欧拉图的欧拉回路个数为:内向树个数乘以 $\prod\limits_{i=1}^{n}deg_i$,其中 $deg_i$ 为 $i$ 号点的度数。
#278:
ucup-team4269
Accepted: : 228
#278:
ucup-team6719
Accepted: : 228
Are we robots?
#278:
XY_Eleven
Accepted: : 228
#284:
cmll02
Accepted: : 227
#284:
KobicGend
Accepted: : 227
#286:
chenshi
Accepted: : 225
#286:
SirTechnical
Accepted: : 225
#286:
ushg8877
Accepted: : 225
#289:
ljw12345
Accepted: : 224
#289:
SoyTony
Accepted: : 224
真実はいつもひとつ
#289:
ucup-team6879
Accepted: : 224
#292:
8BQube
Accepted: : 222
#292:
Auto_7
Accepted: : 222
1
2
3
4
5
6
7
8
9
10
11